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Abstract

This paper treats a vibration control method that can be used in textile machinery to reduce the
unbalanced vibration of an overhung roller–motor system. To control the vibration of the overhung roller,
a drive motor with a hybrid type vibration control device consisted with rubber springs and electromagnets
is used. When the vibration control system is set up in the textile machinery for industrial use, the stand
supporting the control system to the base may be assumed not too rigid but elastic. For a certain value of
the elastic stand stiffness, the vibration control performance of the overhung roller becomes very low. In
order to prevent this deterioration, a stiffness control achieved by a positive feedback of the displacement
signal of the rubber spring is proposed and the effectiveness of the stiffness control is confirmed by
simulations and experiments.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The development of high-speed and high-performance rotating machinery has focused on
suppressing vibrations as a technological challenge. The vibrations of rotating machinery are
mainly caused by either the static or dynamic unbalance of the rotor. The unbalance response of
rotating machinery can be alleviated by a passive vibration control method such as a squeeze film
damper [1,2] and a dynamic vibration absorber [3,4]. In order to effectively reduce the vibrations
of rotating machinery, many active vibration control apparatus which use an electroviscous
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damper [5], piezoelectric actuator [6–9] and electromagnet [10–17] have been applied in recent
years.
There are many types of rotating machinery with an overhung rotor, which is very sensitive to

the rotor unbalance. It is difficult to control the vibrations of the overhung rotor directly, because
the vibration control system may be hardly equipped on the overhung rotor, due to restrictions in
the construction of the rotating machinery [6,7,14–17].
This paper describes a vibration control method that can be used in textile machinery to reduce

the unbalanced vibration of an overhung roller–motor system. To control the vibrations of the
overhung roller, we use a drive motor with a hybrid type vibration control device, in which the
bearing housing of the motor is supported by rubber springs as a passive device and is installed in
four pairs of electromagnets as an active device. The proportional and derivative (PD) control is
performed in the active control system. The electromagnets give a control force to the bearing
housing in the motor and effectively decrease the unbalanced vibration of the overhung roller.
When the motor with the vibration control system is attached to industrial textile machinery, the
stand supporting the motor to the foundation may be assumed not to be a rigid body but an
elastic one. We consider the effect of the elasticity of the stand on the vibration control
performance for the overhung roller, and show that the vibration suppression effect of the
overhung roller becomes very low for a certain value of the spring constant of the elastic stand.
We check the vibration control performance for many PD control parameters by numerical
simulations, and obtain the proper condition of PD feedback gains to effectively control
vibrations of the overhung roller.
The experimental results in our study are compared with the analytical ones, and both

results show a similar tendency. We confirm that the hybrid type vibration control device
in the drive motor is a highly effective device for the vibration suppression of the overhung roller
system.

2. Experimental apparatus and analytical model

2.1. Experimental apparatus

Fig. 1 shows the schematic diagram of the experimental apparatus. This apparatus is a full-scale
model that simulates a motor used in a product line of the textile industry. The mass of the
overhung roller attached at the shaft end is 21.2 kg. The properties of the motor are 3.6 kW, 4-
poles and 10 500 rotation/min in the rated speed. A hybrid type control device constructed of
rubber springs and electromagnets is installed in the bearing pedestal on the anti-roller side. Two
eddy current type displacement sensors are used to measure the displacements of the controllable
bearing in the horizontal and vertical directions, respectively.
The attraction force generated by each pair of electromagnets f is shown by the following

equation, in which the permeability in vacuum is m0; the area of a magnetic pole in the air-gap Ag;
the number of turns of the coil N; the current in the coil i; and the air-gap distance d:

f ¼
m0AgN2

4

i

d

� �2
: ð1Þ
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The magnetic force f in Eq. (1) has a non-linear characteristic that is inversely proportional to the
square of the gap length and proportional to the square of the coil current. In order to linearize
the magnetic force, two pairs of magnets are used to generate the push–pull magnetic force. Let
the initial gap length beW0; the variation of gap Ddnðn ¼ 1; 2Þ; the steady state coil current I0 and
the variation of the current Din ðn ¼ 1; 2Þ: The push–pull magnetic force fn ðn ¼ 1; 2Þ is represented
as in the following expression:

fn ¼
m0AgN2

4

I0 þ Din

W0 þ Ddn

� �2
ðn ¼ 1; 2Þ: ð2Þ

The infinitesimal variation component near the equilibrium point Dfn ðn ¼ 1; 2Þ is obtained from
Eq. (2) as follows:

Dfn ¼ 2F0
Din

I0
þ

Ddn

W0

� �
ðn ¼ 1; 2Þ: ð3Þ

Here

F0 ¼
m0AgN2

4

I0

W0

� �2
:

Letting these two pairs of electromagnets be of the push–pull type, and denoting the relation
between each coil current and the gap as Di1 ¼ �Di2 ¼ Di; Dd1 ¼ �Dd2 ¼ Dx; the variation of the
magnetic attraction force near the equilibrium point Df is obtained as follows:

Df ¼ Df1 � Df2 ¼ 4F0
Di

I0
þ

Dx

W0

� �
: ð4Þ

The first term on the right-hand side of Eq. (4) represents the control force caused by the variation
of the coil current Di; and the second term represents the unstable force due to the negative
stiffness of the electromagnet.
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Fig. 1. Schematic diagram of experimental apparatus.
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Fig. 2 shows the block diagram of the control system with a compensated circuit for a derivative
control where Gd is a derivative gain. Because the coil current Di becomes a first order time delay
response to the current instruction D%i; compensation with the current feedback is performed for
the time delay, and negative stiffness compensation for the unstable force due to electromagnetic
attraction is performed in this control circuit. In Fig. 2, a displacement of the flexible bearing is
fed back to the derivative control circuit, and a damping force is applied to the bearing at the
reverse side of the roller. To prevent noise and saturation in the higher frequency area, two steps
of first order low pass filters (cut-off frequencies: 1=T1 ¼ 3:4 kHz and 1=T2 ¼ 4:4 kHz) are
interposed in the derivative circuit. The time constant of the coil is improved from 17.0 to 1.55ms
(cut-off frequency: 103Hz) by the current negative feedback. The control is performed in the
horizontal and vertical directions independently.

2.2. Analytical model

Fig. 3 shows an analytical model of the roller–shaft system, where the symbol Fc means the
control force of the electromagnets, Kp and Cp mean the equivalent stiffness and the equivalent
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damping coefficient of the flexible bearing pedestal, and Ms; Ks; and Cs are the equivalent mass,
the equivalent stiffness, and the equivalent damping coefficient of the elastic stand, respectively.
Since the boundary condition between the roller–shaft part and the control device changes with
the magnitude of control forces, the model is divided into two components, one being the roller–
shaft part, and the other the elastic stand parts with a control device. The analysis is performed by
the Building Block method [18]. The roller–shaft part is represented by modal co-ordinates, and
the elastic stand parts by physical co-ordinates. Using a modal method can reduce the dimension
of roller–shaft part. A general form of the equations of motion for the roller–shaft part becomes
as follows:

M.zþ C’zþ Kz ¼ F; ð5Þ

where z ¼ xþ jy; F ¼ fx þ jfy ðj ¼
ffiffiffiffiffiffiffi
�1

p
Þ; the symbols x and y are node vectors, and fx and fy are

external forces in the horizontal and vertical direction, respectively. The symbols M and K are a
mass matrix and a stiffness matrix. The matrix C means a coefficient matrix regarding the
damping and gyroscopic effects, and contains the damping and gyroscopic coefficients. In order to
simplify the modal analysis, the damping and gyroscope effects of the overhung roller are
neglected in the equations of motion (5). When the variable z in Eq. (5) is transformed to a modal
displacement vector u for the case C ¼ 0; the following equation is obtained:

&

m

&

2
64

3
75f .ug þ

&

k

&

2
64

3
75fug ¼ fFug; ð6Þ

fFug ¼ ½N	TfFg;

z ¼ ½N	fug;

where m; k and N are the modal mass, modal stiffness and vibration mode, respectively.
By assuming the symbol zm to be the physical co-ordinate vector of the boundary parts of the

support structure combined to the roller–shaft directly, and zr to be the physical co-ordinate
vector of the support structure except the vector zm; the equation of motion of the support
structure is rewritten as follows:

Mrr 0

0 Mmm

" #
.zr

.zm

( )
þ

Crr Crm

Cmr Cmm

" #
’zr

’zm

( )
þ

Krr Krm

Kmr Kmm

" #
zr

zm

( )
¼

Fr

Fm

( )
; ð7Þ

where M; C and K with subscripts are the mass, damping and stiffness matrices of the support
structure, respectively, and Fm and Fr are the control force and the external force applied at the
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points zm and zr; respectively. The combination of Eqs. (6) and (7) becomes as follows:

&

m

&

2
64

3
75 0 0

0 Mrr 0

0 0 Mmm

2
6666664

3
7777775

.u

.zr

.zm

8><
>:

9>=
>;þ
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2
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>:

9>=
>;

þ
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2
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3
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2
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3
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u

zr

zm

8><
>:

9>=
>; ¼

Fu

Fr

Fm

8><
>:

9>=
>;: ð8Þ

The relation between the modal co-ordinate and the co-ordinate of the combined point is
represented as in the following equation:

fzmg ¼ ½N	fug: ð9Þ

Using Eq. (9), the following relation is obtained.

u

zr

zm

8><
>:

9>=
>; ¼

I 0

0 I

N 0

2
64

3
75 u

zr

( )
; ð10Þ

where I is a unit matrix. Substituting Eq. (10) into Eq. (8), and multiplying the transpose of the
coefficients matrix from the left side, the final combined equation of the motion is derived as
follows:

&

m

&

2
64

3
75þNTMmmN 0

0 Mrr

2
66664

3
77775

.u

.zr

( )
þ

NTCmmN NTCmr

Crm Crr

" #
’u

’zr

( )

þ

&

k

&

2
64

3
75þNTKmmN NTKmr

KrmN Krr

2
66664

3
77775

u

zr

( )
¼

Fj þNTFm

Fr

( )
: ð11Þ

The compliances of the overhung roller are calculated from Eq. (11) by using the MATLAB/
SIMULlNK (The MATH WORK Inc.). A similar procedure is used when the damping and
gyroscopic effects of the roller–shaft part are considered.
The rotating shaft is divided for each non-uniform section, and the mass and the moment of

inertia for the roller and the rotor core of the motor are considered. The roller–shaft system is
transformed into the mode co-ordinates by using the finite element method. The modes from first
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to third are taken into account in this paper from the regions of the rotating speed and the
controller frequency of the experimental apparatus. The equivalent mass Ms; stiffness Ks and
damping coefficient Cs of the elastic stand are estimated from actual measurements. The
equivalent damping coefficient of the rubber spring is also calculated from the damping ratio of
the experimental result.

3. Analytical results

3.1. The relation between stand stiffness and vibration mode

Fig. 4 shows the calculated results of natural frequencies and vibration modes in the case of
without control. Figs. 4(a)–(c) show the mode shapes for the spring coefficients of the elastic stand
Ks=1.0
 10

6, 1.6
 107 and 8.0
 107N/m, respectively. The marks 
 in Fig. 4 show the
vibration mode of the elastic stand Ms: The vibratory modes up to the third mode in Figs. 4(a)
and (b) and only the first mode in Fig. 4(c) are included in the rated rotational speed of the
experimental set-up, 10 500 rotation/min (167Hz).
When the spring coefficient of the stand is relatively small like the one in Fig. 4(a), both the

control force and the damping force of the rubber spring seem to have little effect on the vibration
control for the first mode, because the relative displacement between the rotating shaft and the
elastic stand (mark 
 ) becomes very small for this mode. In Fig. 4(b), the relative displacement
between the rotating shaft and the elastic stand (mark 
 ) is almost zero for the second mode, and
thus the damping control is less effective for this mode.
While the vibration control becomes possible for the other modes of Fig. 4, because the relative

displacement between the rotating shaft and the elastic standMs is not equal to zero, the damping
control is effective.

3.2. Damping control of controllably flexible bearing

When force is applied to the roller at point A shown in Fig. 3, the compliance of the roller
system is obtained by numerical analysis. Fig. 5 shows the calculated results of the compliance of
the roller at point A in Fig. 3 for the damping vibration control using the controllably flexible
bearing. In this figure, the symbol Ce means the equivalent damping coefficient due to the
derivative control that can be adjusted arbitrarily by varying the derivative gain Gd shown in Fig.
2. The spring coefficients of the stand are Ks=1.0
 10

6, 1.6
 107 and 8.0
 107N/m in Figs. 5(a)–
(c), respectively. In Fig. 5, the dotted lines, solid lines, and dot-dash lines are for the case without
control, Ce=2.0
 10

4 and 1.0
 105Ns/m, respectively.
The compliance of the first mode hardly changes with the damping coefficient Ce for

Ks=1.0
 10
6N/m in Fig. 5(a), because the rotating shaft and the elastic stand Ms move as one

body, and the relative displacement becomes very small. For the second mode, the decreased
relative displacement make the control impossible under the conditions of Fig. 5(b) for
Ks=1.0
 10

7N/m. In Fig. 5(c) for Ks=8.0
 10
7N/m, the peak compliance of the second

resonance becomes inconspicuous since the mode displacement of the roller becomes small at the
second mode, and the relative displacement between the rotating shaft and the elastic stand is
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large, as shown in Fig. 4(c). In Fig. 5, the peak compliances of the first and second resonance
become smallest for Ce=20kNs/m, and it can be concluded that there is an optimum value for
the equivalent damping coefficient Ce:

3.3. Stiffness control of controllably flexible bearing

In Section 3.2, it is explained how the control effect to the vibration becomes less effective with
the decrease of the relative displacement between the rotating shaft and the elastic stand Ms: The
relative displacement depends on the flexural stiffness of the rotating shaft and the spring
constants both of the rubber spring and the elastic stand. In order to perform the stiffness control,
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the proportional gain block and a high-pass filter illustrated in Fig. 6 is added in the control loop
shown in Fig. 2. The symbol Gp in Fig. 6 is the proportional gain. The stiffness control is achieved
by conducting positive feedback of the displacement signal through a high-pass filter, and a
proportional gain block in parallel with a derivative gain block. Since the positive feedback of the
displacement signal of the flexible bearing is equivalent to the addition of a negative spring to the
bearing pedestal, the stiffness control can be reduced to a spring constant, and the equivalent
spring constant Ke due to the stiffness control becomes a negative value. Furthermore, by
interposing a high-pass filter (the time constant: Tt), the reduction of stiffness in the lower
frequency area can be prevented. The breaking frequency of the high-pass filter is equal to 2.65Hz
in order to neglect the effect of the first mode.
Fig. 7 shows the vibration mode for Ks=1.6
 10

7N/m and Ke=�5.2
 106N/m, that is,
Kp þ Ke=1.3
 10

6 N/m. In comparison with Fig. 4(b) for the same Ks value, the relative
displacement between the rotating shaft and the elastic stand becomes larger, and an improvement
of the effect on the vibration control is expected. The second mode is hardly improved, however,
because this mode is determined by the values of Ms and Ks: Fig. 8 shows the calculated
compliance of the roller at point A in Fig. 3 for the stiffness control. From Fig. 8, the peaks of
compliance for the stiffness control are more obviously reduced than those for the damping
control, except for the second mode in Fig. 8(b) for Ks=1.6
 10

7N/m.
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Figs. 9(a) and (b) show the relations between the Ks value and the peak compliance at point A
in Fig. 3 for the first and second modes, respectively. The solid line indicates the damping control
results (Ke ¼ 0 N=m; Ce ¼ 20 kN s/m), and the dotted line indicates the stiffness control results
(Ke=�5.2
 106N/m, Ce ¼ 0 kN s/m). The vibration control for the stiffness control is more

ARTICLE IN PRESS

(a) 

Ke =  −5.2 × 106 N / m
10-4

10-5

10-6

10-7

10-8

0 50 100 150 200 250

Roller

C
om

pl
ia

nc
e 

m
/N

C
om

pl
ia

nc
e 

m
/N

C
om

pl
ia

nc
e 

m
/N

Frequency Hz

Ce = 0 kNs m/

2
20

1st

2nd

(b) 

10-4

10-5

10-6

10-7

10-8

0 50 100 150 200 250

Roller

Frequency Hz

1st 2nd

(c) 

10-4

10-5

10-6

10-7

10-8

0 50 100 150 200 250

Roller

Frequency Hz

1st

2nd

Fig. 8. Compliance of roller for stiffness control (calculated results). (a) Ks=1.0
 10
6N/m, (b) Ks=1.6
 10

7N/m, (c)

Ks=8.0
 10
7N/m.

(a)

10-4

10-5

10-6

10-7

10-8

Roller

C
om

pl
ia

nc
e 

m
/N

Stand stiffness Ks N/m

 −5 2× 106. /N m

106 107 108

With damping control
With stiffness control

Ke =

(b)

10-4

10-5

10-6

10-7

10-8

Roller

C
om

pl
ia

nc
e 

m
/N

Stand stiffness Ks N/m

Ke=  −5.2×106 /N m

106 107 108

Fig. 9. Relation between stand stiffness Ks and peak compliance. (a) First resonance, (b) second resonance. The solid

line indicates the damping control results (Ke ¼ 0 N=m; Ce ¼ 20 kN s/m) and the dotted line indicates the stiffness
control results (Ke=�5.2
 106N/m, Ce=0kN s/m).

K. Mizutani et al. / Journal of Sound and Vibration 269 (2004) 765–780 775



effective than that for the damping control during all ranges of the stand stiffness at the first
mode. But when Ks is greater than 1.6
 10

7N/m at the second mode, the compliance of the
stiffness control is almost the same as that of the damping control.

4. Experimental results

The experiments are performed using the horizontal overhung roller system shown in Fig. 1.
Figs. 10(a) and (b) present the photographs of the experimental apparatus, and vibration control
device and control circuit box compared with a 30 cm rule.
The compliance is obtained by the transfer function between the striking force and the

vibratory displacement when the roller is struck at point B on the outside of the roller in Fig. 3 by
an impulse hammer. The measured natural frequencies without control are 24.0Hz (first mode)
and 77.5Hz (second mode) for Ks=1.0
 10

6N/m, and 63.8Hz (first) and 171Hz (second) for
Ks=8.0
 10

7N/m, which correspond to the calculation results of Fig. 4. Fig. 11 shows the roller
compliance at point B in Fig. 3 with the damping control or the stiffness one for Ks=1.0
 10

6,
1.2
 107 and 8.0
 107N/m. Some Ks values differ a little from those in simulations because the
spring constant of the stand can be only adjusted discontinuously in experiments. The
experimental results agree well with the simulation results, and it is confirmed that the stiffness
control is useful in practical machinery. For the case of stiffness control, a little peak appears near
10Hz caused by the new root due to a high-pass filter. The tuning of Ke and Ce in the practical
machine can also be easily adjusted only two gain controllers.
The unbalance responses of the roller at point B in Fig. 3 are shown in Fig. 12, which is

obtained from the rotating experiments. Figs. 12(a) and (b) correspond to the stand stiffness
Ks=1.0
 10

6 and 8.0
 107N/m, respectively. The marksJ represent the results of the damping
control as the same condition as Figs. 5(a) and (c) for Ce ¼ 20 kN s/m, and the marksK represent
those of the stiffness control for the same condition as Figs. 8(a) and (c) for Ce ¼ 0 kN s/m. The
effect of the stiffness control at the peak for the first and second modes is approximately similar to
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the calculation results. It can be confirmed that the stiffness control is effective even for the
unbalance responses. It is the main reason that the flexible bearing makes move easily because the
equivalent spring constant of the flexible bearing is reduced for this positive feedback control, and
then the vibration control forces, especially the damping control force, act on the overhung roller
system more effectively.
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5. Conclusions

In relation to the vibration control of the overhung roller–shaft system with the elastic stand
proposed in this paper, the major results obtained are summarized as follows:

1. To control the vibration of an overhung roller–motor system used in textile machinery, a
hybrid type vibration control device made with rubber springs as a passive device and
electromagnets as an active device is proposed. For some conditions of the stand stiffness, the
relative displacement from the flexible bearing to the elastic stand becomes very small, and thus
the vibration control performance decreases.

2. In order to effectively control the vibration of the roller system with the elastic stand, the
stiffness control achieved by the positive feedback of the displacement signal of the flexible
bearing is applied, and simulations and experiments confirm the effectiveness of the stiffness
control.

3. The calculations and the experiments are performed for a full-scale model used in a product line
of the textile industry, and the results obtained in this paper can be applied in their entirety to
the vibration control in practical machinery. The tuning of control gains in the practical
machine can also be easily adjusted with only two gain controllers.

Appendix. A: Nomenclature

Ag area of a magnetic pole in the air-gap

Ce equivalent damping coefficient due to the derivative control
Cp equivalent damping coefficient of the flexible bearing pedestal

Cs equivalent damping coefficient of the elastic stand
f attraction force generated by the electromagnet
f1; f2 push–pull magnetic force
Fc control force of the electromagnet
Gd derivative gain
Gp proportional gain

i current in the coil
I0 steady state current in the coil
j ¼

ffiffiffiffiffiffiffi
�1

p
k modal stiffness
Ke equivalent stiffness due to the stiffness control
Kp equivalent stiffness of the flexible bearing pedestal

Ks equivalent stiffness of the elastic stand
m modal mass
Ms equivalent mass of the elastic stand
N number of coil turns
T1; T2 cut-off periods of low pass filter
Tt time constant of high-pass filter
W0 initial gap length of the magnet
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d air-gap distance of the magnet
Df variation of magnetic attraction force from the equilibrium
Df1; Df2 variations of push–pull magnetic attraction forces from the equilibrium
Di variation of coil current from the equilibrium

D%i variation of instruction current from the equilibrium

Di1; Di2 variations of control current from the equilibrium
Dx variation of gap of push–pull magnet from the equilibrium
Dd1; Dd2 variations of gap of push–pull magnet from the equilibrium
m0 permeability in vacuum

Vectors and matrices

C matrix contained damping coefficients and gyroscopic ones
fx external force in the horizontal direction
fy external force in the vertical direction

F =fx þ jfy
Fm control and/or external force applied at point zm
Fr control and/or external force applied at point zr
I unit matrix
K stiffness matrix
M mass matrix
N vibration mode
x node vector in the horizontal direction
y node vector in the vertical direction
z =xþ jy
zm physical co-ordinate vector of boundary parts of the support structure combined to

the roller–shaft
zr physical co-ordinate vector of the support structure except zm
u modal displacement vector
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